

Physician induced demand for knee replacement surgery in Iran

Organized by:

Health Equity Research Center (HERC)
Urmia University of Medical Sciences (UMSU)

Presented by:

Dr. Cyrus Alinia

Assistant professor of Health Economics, UMSU, Iran

August 24, 2021

RESEARCH Open Access

Physician induced demand for knee replacement surgery in Iran

Cyrus Alinia¹, Amirhossein Takian^{2,3,4*}, Nasser Saravi⁵, Hasan Yusefzadeh¹, Bakhtiar Piroozi⁶ and Alireza Olyaeemanesh^{2,7}

Background

- Knee osteoarthritis: a chronic and age-related condition with pain and disability,
- Incidence: 10% of men and 13 % of women over the age of 60,

19.3% of rural and 15.3% of urban

- **Burden:** loss of 19-34 % of HRQoL
- Treatment: Knee Replacement Surgery (KRS); effective, expensive, invasive for severe and end-stage knee arthritis resulting from post-traumatic arthritis, and inflammatory arthritis
- Complications: a significant proportion of postoperative patients report persistent knee pain, poor knee function, and patient dissatisfaction
- Risk factors: Age and obesity
- Increased demand reasons: Technology advances, changing lifestyle, health knowledge and access

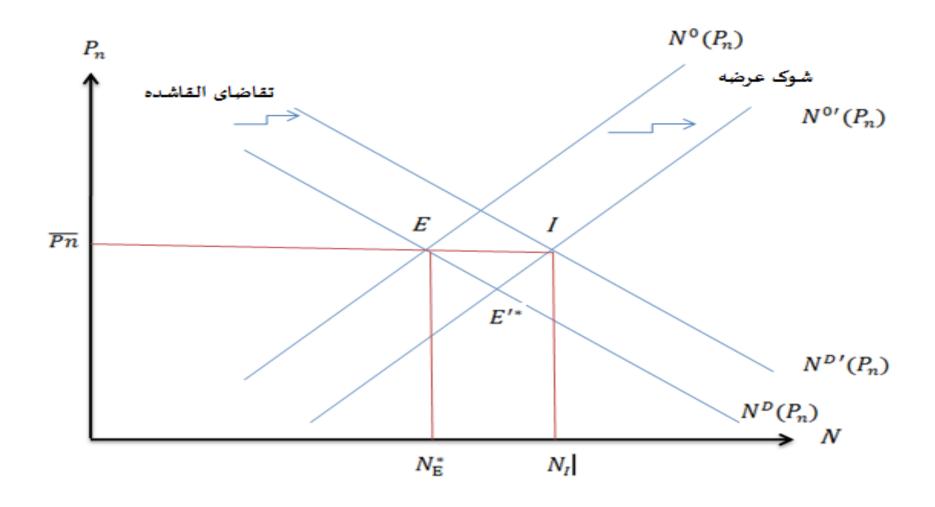
Background

KRS and PID in Iran

- ✓ population-adjusted rate has doubled in the last five years,
- ✓ The mean age of patients undergoing KRS (65 years) is lower than in developed countries,
- ✓ Surgeon to population ratio has increased,
- ✓ Health system structural factors: 1- Physicians have a very high degree of freedom of action
 - 2- FFS reimbursement system
 - 3- Fixed tariffs of health services
 - 4- The health insurances cover > 90 % of population.

Dataset

- ✓ Microeconomic data for the monthly average number of KRS activities by each orthopedic specialist over 2014 to 2019, compiled from the AFIO at the provincial level,
- ✓ The unbalanced individual panel data covers the steady-state 15,729 surgeries performed by 995 surgeons,
- ✓ **Population data** (population size over 50 years and income) are extracted from the census results for 2011 and 2016 years.
- ✓ Average annual growth: 0.021



Demand drivers

- ✓ Increasing access to the services
- ✓ Increasing income
- ✓ Improving the level of health insurance coverage
- ✓ Raising the level of public health awareness
- ✓ Increasing the elderly population
- ✓ Disease outbreak
- **✓ PID**

Variables

D_{it}: Density variable

- The changes in the supply of KRS services are measured by D_{it} of orthopedic surgeons,
- Equal to the ratio of surgeons to every 100,000 population over 50 years of age

N_{it}: Average number of performed KRS by each physician

- Show changes in the number of surgeries over time,
- It is crucial variable, but has four drawbacks
- 1) not able to identify the access effect
- 2) not show the content of the service
- 3) not depict the **initiating effect**
- 4) not consider the practice style/preferences of physicians

Variables

S_{it} : The size of performed KRS by each physician

- Is obtained by multiplying the N_{it} by the cost of each operation, which is paid by the patient and the health insurance: $S_{it} = N_{it} * F_{it}$
- A significant increase in the mean of S_{it} over time clearly indicates a change in the type of operation, a rise in the price of the material used, or a combination of both.
- It can relatively eliminate all four weaknesses of N_{it} The variables N_{it} and S_{it} represent the demand factors, and their changes indicate the demand shock.

 F_{it} : Relative value of the cost of each surgery

■ = Service cost / 100000

Judgment logic

- 1) In the absence of PID:
- Supply rationing will arise: the patient quota of each physician will decrease, and therefore the microeconomic elasticity of N_{it} will be negative.
- 2) In the presence of PID:
- Surgeons can freely increase the S_{it} , and therefore the microeconomic elasticity of S_{it} will be Positive.
- ❖ The sufficient conditions for the existence of PID for KRS are;
- 1) The elasticity of $S_{it} > 0$
- 2) The elasticity of S_{it} > The elasticity of N_{it}

- We applied a dynamic panel data (DPD) based on logarithmic supply-and-demand models,
- The estimations are based on the elasticity of the KRS demands in response to changing D_{it}
- DPD consider both random, constant, and permanent unobserved heterogeneities,
- To test the PID, we need three separate econometric models that are exactly the same, but their dependent variables include N_{it} , S_{it} , and F_{it} :

$$\log(n_{it}) = \alpha \log(d_{it}) + \gamma \log(inc_{it}) + Z'_{t[1,k]} \theta_{[k,1]} + \xi_{\delta} + v_i + \varepsilon_{it}$$

$$t = m4 - 2014, ..., m3 - 2019; i = 1, 2, ..., 22$$

$$\log(n_{it}) = \alpha \log(d_{it}) + \gamma \log(inc_{it}) + Z'_{\mathsf{t}[1,k]} \; \theta_{[k,1]} + \xi_{\delta} + v_{i} + \varepsilon_{i\mathsf{t}}$$

$$t = m4 - 2014, ..., m3 - 2019; i = 1, 2, ..., 22$$

- The constants V_i : fixed and inherent characteristics of the patients that are not obviously considered in the model:
- o Gender,
- o Age,
- o Disease severity,
- o Level of insurance coverage,
- o Level of earning,
- o Reputation effect.

$$\log(n_{it}) = \alpha \log(d_{it}) + \gamma \log(inc_{it}) + Z'_{t[1,k]} \theta_{[k,1]} + \xi_{\delta} + v_i + \varepsilon_{it}$$

$$t = m4 - 2014, ..., m3 - 2019; i = 1, 2, ..., 22$$

- **D**_{it} is an aggregate variable
- It shows the intensity of competition between orthopedic surgeons to perform KRS at the provincial level, presence of a random term ξ_{δ} in the perturbation.

$$\log(n_{it}) = \alpha \log(d_{it}) + \gamma \log(inc_{it}) + Z'_{\mathsf{t}[1,k]} \; \theta_{[k,1]} + \xi_{\delta} + v_{i} + \varepsilon_{it}$$

$$t = m4 - 2014, ..., m3 - 2019; i = 1, 2, ..., 22$$

- $Z_{t[1,k]}$ is time-varying determinants that affect all surgeons alike
- o Supply of new technologies,
- o Economic growth,
- o Changes in demographic characteristics,
- Lifestyle changes

$$\log(n_{it}) = \alpha \log(d_{it}) + \gamma \log(inc_{it}) + Z'_{t[1,k]} \theta_{[k,1]} + \xi_{\delta} + v_i + \varepsilon_{it}$$
$$t = m4 - 2014, ..., m3 - 2019; i = 1, 2, ..., 22$$

- In one-step estimator: the error term ε_{it} is assumed to be i.i.d. $(0, \delta^2)$ across provinces and time.
- In the two-step estimator: the residuals of the first step are applied to consistently estimate the variance-covariance matrix of the perturbation ε_{it} , relaxing the homoscedasticity assumption.

The models

• The constant effects of V_i and ξ_{δ} are eliminated by differencing the first order and our specification is optimized as follows:

$$\mathbf{n}_{it} = \alpha \mathbf{d}_{it} + \gamma \mathbf{i} \mathbf{n} \mathbf{c}_{it} + \lambda \mathbf{n}_{it-1} + c_t + \varepsilon_{it}$$

- ➤ In the resulted specification, the variables represent the first difference of the corresponding logarithm forms.
- ightharpoonup The $Z_{t[1,k]}$ is reduced to fixed time effects C_t .
- To tackle with the endogeneity and addressing the unobserved heterogeneity, a lagged dependent variable added as an instrumental variable.

$$\mathbf{n}_{it}^{\cdot} = \alpha \mathbf{d}_{it}^{\cdot} + \gamma \mathbf{i} \mathbf{n}_{it}^{\cdot} \mathbf{c}_{it} + \lambda \mathbf{n}_{it-1}^{\cdot} + c_t + \varepsilon_{it}^{\cdot}$$

$$\mathbf{s}_{it}^{\cdot} = \alpha \mathbf{d}_{it}^{\cdot} + \gamma \mathbf{i} \mathbf{n}_{it}^{\cdot} \mathbf{c}_{it} + \lambda \mathbf{s}_{it-1}^{\cdot} + c_t + \varepsilon_{it}^{\cdot}$$

$$\mathbf{f}_{it}^{\cdot} = \alpha \mathbf{d}_{it}^{\cdot} + \gamma \mathbf{i} \mathbf{n}_{it}^{\cdot} \mathbf{c}_{it} + \lambda \mathbf{f}_{it-1}^{\cdot} + c_t + \varepsilon_{it}^{\cdot}$$

- Empirical specification and estimation
- **OLS-Pool** is the standard approach to estimate the coefficient of a panel data model.
- Generalized Method of Moments System (GMM-SYS) is the best approach that is consistent, asymptotically efficient, and provide a strong instrument for DPD,
- **GMM-SYS** model uses the lagged dependent variable as an instrument,
- **❖** Validity tests:
- o m1 & m2 tests: to check the conditions of first and second-order of serial correlation of the estimated residuals, respectively
- Sargan test: to checks the validity of the instruments used
- Hansen test: to test the overall effectiveness of all the instrumental variables
- Wald Chi-Squared test: to checks a possible heteroskedasticity of residuals

Results

Table 1 The monthly-province level population characteristics; 2014-2018 (N=15729)

Years	2014	2015	2016	2017	2018	Growth rate	
Statistics	Mean (SE)						
N	11.03 (2.59)	12.48 (2.66)	14.83 (2.71)	16.27 (3.05)	18.19 (3.19)	64.91%	
P_n	1759.54 (75.02)	1793.20 (68.39)	1810.49 (77.04)	1884.47 (61.36)	1940.19 (55.51)	10.27%	
P_p	0.19 (0.02)	0.23 (0.02)	0.26 (0.02)	0.32 (0.02)	0.37 (0.02)	94.74%	
P_{ph}	1.39 (0.05)	1.44 (0.05)	1.53 (0.05)	1.65 (0.06)	1.88 (0.06)	35.25%	

N number of KRS at monthly-province level, P_n cost of each surgery, P_p number of the surgery per 100,000 population, P_{ph} number of the surgery per active physician

Results

Table 2 Panel-data unit root test (Fisher type based on Augmented Dickey-Fuller)

Variables	Inverse chi-squared P	Inverse normal Z		
n _{it-1}	665.66**	-22.50 ^{**}		
S _{it} - 1	520.99	-19.22		
f_{k-1}	395.89**	-15.85**		
n _{it}	645.13	-22.20		
inc	124.21	-9.47**		

^{**}Indicate that the non-stationary null hypothesis is rejected at the 1% significance level

Results

Table 3 Estimates of OLS-Pool and Two-Step Difference GMM models

Independent	OLS-Pool			Two-Step Difference GMM			
Variables	$y_{it} = n_{it}$ (1)	$\mathbf{y_{it}} = \mathbf{s_{it}}$ (2)	$y_{it} = f_{it}$ (3)	y _{it} = 'n _{it} (4)	y _{it} = 's _{it} (5)	$\mathbf{y}_{it} = \mathbf{f}_{it}$ (6)	
'd _{it})SE(0.71 ^a (0.03)	0.79 ^a (0.03)	0.07 (0.01)	0.94a (0.05)	1.01 ^{aa} (0.04)	0.06 ^a (0.02)	
·y _{it-1})SE(0.63 ^a (0.02)	0.63 ^a (0.02)	0.68 ^a (0.03)	-0.04° (0.05)	0.07° (0.03)	0.11 ^a (0.05)	
inc)SE(0.15 (0.08)	0.09 ^a (0.07)	-0.04 (0.02)	-1.25 (1.88)	0.80 (0.33)	0.54 (0.35)	
Constant	7.96a (1.51)	13.06 ^a (1.69)	4.35° (0.85)	36.18a (32.56)	11.85° (10.96)	0.84ª (5.94)	
N. observation	823	823	823	823	823	823	
R-squared	0.826	0.805	0.473				
F-test (p-value)			0.000	0.000	0.036		
Wald test				601.34	599.96	8.55	
Hansen test				0.361	0.284	0.413	
Sargan test				0.277	0.175	0.339	
M2 test				0.671	0.589	0.712	

alndicate that the coefficients are significant at the 1% level

Discussion

- Both analytical models obtained the **significant** elasticity of $1 > N_{it} > 0$.
- This finding indicates demand rationing so that the average number of performed KRS by each surgeon has increased over time.
- The S_{it} elasticity in both static and dynamic equations > 0 and $> N_{it}$.
- Generally, the outcomes show that with increasing D_{it} , both the N_{it} and S_{it} of KR services were increased significantly at 1 % level.
- The F_{it} models confirmed the observed significant difference.
- The findings of DPD model shows all surgeons have compensated for all their reduced income with PID.
- The positive elasticity associated with N_{it} variable may be due to the availability effect, but the increase in S_{it} certainly cannot be related to this issue.

Discussion

- Finally, we concluded that we have a PID for the KRS in Iran, at least as much as the elasticity obtained for the F_{it} .
- If we accept the GMM-SYS model as an appropriate approach, the minimum PID is about 6 %.
- The observed positive association between D_{it} and the N_{it} KRS service is contrary to that of behavior of general an specialist physicians in France and among Unites States general physicians, but the final outcome was similar.
- In similar studies it does not observed an established PID among Norwegian primary care physicians
- These differences may be attributed to the difference in :
- o Health system structure,
- o Type of payment system,
- Health insurance performance,
- o The existence of a fixed or flexible reimbursement fee,
- o Type of services studied.

Discussion

The reasons of existing PID in Iranian health system

- Lack of a managed care system,
- Not using the clinical guidelines,
- Lack of adequate supervision of providers,
- The existence of Fee-For-Service payment system,
- Severe information asymmetry between the health insurances and the service providers.

ANY tions?